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Nomenclature

As Filter function
b Blade spacing
C Blade section chord length
D Propeller diameter
f(r) Longitudinal velocity correlation function

fM Meanline shape function
g(r) Transverse velocity correlation function
Gij(w) Velocity correlation in frequcncy domain
H(w) Aerodynamic response function

iT Total rake
J = V/nD Advance coefficient
K(w) Sears function
k Wave number
£(t) Hydrodynamic force
n Propeller rotational speed, rps
P Pitch of blade section
r Radial coordinate or distance between two points
R Propeller radius
Ri~j(7) Velocity correlation in time domain
u Root mean square of turbulence
ui Turbulent velocity in i-th direction
U(r) Resultant velocity at propeller radius r
Va Axial velocity at propeller plane for a given radial location
V Ship speed

# Lbs
w Frequency

Shaft rate frequency
QI Blade rate frequency

qs Skew angle
A Turbulence integral length scale



p Fluid density

0 Propeller blade pitch angle
Oi One dimensional turbulence spectrum

Wave number spectrum of turbulence
Broadband unsteady thrust spectrum

Broadband unsteady thrust/w 3
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Abstract

This report presents the theoretical prediction of the low frequency un-
steady broadband thrust for propellers/rotors in a turbulent flow, such
as those on any surface ship. Broadband thrust forces are predicted by
the use of a new correlation method and are compared with existing the-
oretical models based on both correlation and spectrum approaches. In
contrast to the available theories, the new theory predicts low blade rate
humps and broadband forces simultaneously. For a homogeneous and
isotropic turbulent inflow and for a given advance coefficient, turbulence
length scale and turbulence level, the present theory produces an unsteady
broadband thrust level which is proportional in the high frequency region
to the third power of ship speed. At low frequencies, predictions of pro-
peller unsteady thrust spectra show peaks near the first and second blade
rate frequencies and those peaks skew to the higher frequency side of the
blade rate frequencies. The physics of the phenomena are discussed and
numerical results are compared with limited experimental data.

Administrative Information

This work was performed at the David Taylor Research Center (DTRC)
in Bethesda, Maryland 20084-5000 with work unit 1-1904-301, with fund-
ing from the Office of Naval Research, element 0101224N.

Introduction

The unsteady forces generated by a propeller/rotor consist of periodic
force components and a broadband force component. The narrowband pe-
riodic force components occur at multiples of the blade passage frequency
and are considered to result from the unsteady pressure distribution on the
propeller blades. These unsteady pressures are caused by the non-uniform
inflow or by cavitation, such as for the propellers on surface ships. Force



spectra from this non-uniform inflow are narrowband at the blade rates.
The high frequency broadband noise is due to vortex shedding by the
propeller blades. Although designers are careful to reduce these unsteady
force sources, laboratory experiments indicate that an unexpected broad-
band force occurs at first and second blade rate frequencies. This low
frequency broadband force is due to the interaction of the inflow turbu-
lence with the propeller blades. The inflow turbulence ingested on the
propeller blades is generated in the hull boundary layer and in the bound-
ary layers on all the appendages upstream of the propeller, superposed on
the ambient free-stream turbulence. Therefore, the inflow turbulence may
contain a broad range of length scales. This report addresses the effects of
turbulence on broadband forces generated by propeller blades regardless
of the source of the turbulence.

The unsteady force caused by turbulence ingestion has been studied by
several investigators in the past. Most previous studies are based upon
special assumptions and, thus, lack generality. Sevik [1] considered the for-
ward speed to be much greater than the propeller rotational speed and,
therefore, regarded the blades as rotationally stationary with respect to
the turbulence. This assumption implied that the blades are rotationally
uncorrelated. He measured the unsteady thrust on a ten-bladed rotor
operating in a water tunnel downstream of screen-generated turbulence.
The experimental measurements show humps near blade rate frequencies
and its multiples which were not predicted from Sevik's theory. Thomp-
son [2] extended this theory and performed additional experiments for
rotors with different numbers of blades. The experimental results show
that the magnitude of the broadband humps increases when the blade-to-
blade spacing decreases. He included in his analysis the blade to blade
circumferential correlations in a zero forward speed sense. In comparison
to the experiments, his theoretical results produced consistently higher
humps. Chandrashekhara [3] examined only the cases for which the cir-
cumferential correlation length was larger than a blade spacing. Mani
[4], Homicz and George [5], Amiet [6], and Blake [7] considered the to-
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tor forces and noises radiated by turbulence with a given wave spectrum.
Mani [4] showed that the radiated sound spectrum from a rotor operating
in a turbulent inflow has humps centered at the blade rate frequencies
and its multiples. The width of those humps was found in his experi-
ments to be related to the ratio of the turbulence length scale to the blade
spacing. Blake [7] considered the case of a rotor with a small advance
coefficient and a turbulence length scale considerably smaller than the
length of the blade span. Simple results are obtained from asymptotic
expansion of small and large correlation lengths. The small correlation
result approaches the result of Sevik's analysis, and the large correlation
theory predicts the narrow bandwidth humps at blade rate frequencies.
Although Blake's model predicts the humps at the blade rate frequency,
the hump amplitudes above the smooth broadband force spectrum curve
do not exhibit the decay phenomena observed in experiments. Recently,
Martinez [8] extended Sevik's theory by including the propeller rotational
speed in the correlation area, a term defined in [1]. His results show only
small humps at blade rates and were again unable to explain the near
blade-rate humps demonstrated in experiments.

In the present report, the correlation analysis follows Sevik's approach
[1], but removes the simplification of the velocity correlation tensor used
in [1] and [8]. The blade rotational effect is correctly preserved in the anal-
ysis and the results resemble the experimental observation. Numerically,
for a given turbulence correlation function, the statistical properties of the
unsteady angle of attack encountered by the moving blade are evaluated
at each time step. Then the force spectrum is obtained from a Fourier
transformation of the computed time history of those unsteady angles of
attack. The next two sections outline the fundamental approaches and
tihe corresponding computational procedures. Numerical examples are in-
cluded for the thrust spectrum of isotropic turbulence on a rotor using
both correlation and spectrum approaches. These results are compared
with existing experiments. A flow chart of the present numerical tur-
bulence ingestion (TI) model is given in Figure 1; the blade surface is

3



divided into chordwise strips along the span. Each strip is considered as
a two-dimensional (2-D) section with unsteady lift concentrated at the
quarter-chord of that section. As is indicated in Figure 1, the two criti-
cal components of the model are the inflow turbulence characteristics and
the transfer function between the turbulence intensity spectrum and the
unsteady forces. In the given examples, the Sears function is used as the
fluid dynamic transfer function.

Theoretical Approach

The analysis of turbulence-generated propeller broadband force can be
approached with two different techniques. One is the spectrum approach
and the other is the correlation approach. These two approaches should
lead to the same results if the specified spectrum form and correlation
function describe the same turbulence characteristics. The authors prefer
the correlation method because it is the more direct approach and is easier
to apply numerically. However, for completeness of the study, the spec-
trum approach is included in this report. Results from both approaches
will be compared in the discussions.

Spectrum Approach

This section follows the procedure described in Blake [7], which assumes
that the turbulence is convected frozen (Taylor's hypothesis) and the tur-
bulent characteristics are represented as a product of functions in each
direction (separation of variables). With the turbulent inflow component
normal to the blade, U2 in Figure 2, expressed in terms of its Fourier
transform:

712(k~w) =(7) 3 fJJU2 (x, t)ez(k-'wf)dFdt(1
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where' denotes the vector in terms of the coordinates in the propeller
plane (X 1 , X3) and its normal (X2), the lift per unit radius on the s-th
blade written in terms of the Fourier components of the incident upwash,
u2(kw), is

dLs(w)/dr = prCU2(k,w)U(r)L 2D(kjC/2)i(k3 k2sb-w) (2)

where L2D is the two-dimensional lift due to a unit disturbance, C is
the blade chord length, b is the blade spacing at the radius r, k12 equals
kI cos 0 + k2 sin q, q is the blade pitch angle, and U(r) is the resultant
velocity into the blade at radius r. The net force on an N-bladed propeller
in the i-th direction due to the (k,w) turbulence contribution is found
by summing over all the blades and integrating over the radius from the
propeller hub (RH) to tip (RT)

Fi(Rw N-1

Fi (k, w) = IR pi~ 2 k, w)U(r)nj(k)L2 D(kiC/2) E c i(k3r+kljsb-wI )dr (3)
RH PCU(s=0

where ni(O) is the direction cosine in the i-th direction of the blade. The
summation over the N blades in equation ( 3) is called a filtering function,
denoted As, and is

N-i
As(kl 2b) E Cikl2sb

s=O

sin( N k12b/2) [i(N- 1)k12b/2]

sin(kl 2b/2)

Substituting this exprcssion back into equation ( 3), the net force becomes

Fi(k, L);= ' pw Cu 2(k,w)U(r)nj(6)L 2D(k C/2)As(ki2 b)G-(k3r-t dr (5)
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and the frequency spectrum of the fluctuating force, 'ii(w), becomes

kl Ik2 Jk3 JRH1 /R11 p1 2C L-9D(kC12) 121 As(kl 2b) 12

U(ri)U(r2) 22 (k, w)ni(-ly i( 2 )gk(r2-r)dr2 drldk (6)

where 4 22(k,w) is the wave number spectrum of the turbulent field. Equa-
tion ( 6) is the fundamental form of the spectrum approach. It is clearly
seen that the major task of the analysis is in the specification of the wave
number spectrum of the turbulent field 4 22(k,w) and the evaluation of
the multiple integrals. In general, the spectrum form 122(k,w) associated

with a moving body is not known, and the prediction of 'I'ii(w) with triple
integration over k is impractiable. Neverthcness, the analytical results
associated with some simple forms of 1 22(k,w) could provide a good ap-
proximation to reality and lead to a better understanding of the overall
features of Tii(w).

By applying Taylor's hypothesis that the turbulence convects over the
blade with the resultant velocity and without decay, and by assuming
that the wave number spectrum can be separated into directions along the
resultant velocity (k), the radial direction (k 3), and the normal direction

(k 2), the turbulence spectrum becomes

(I 22 (k,c,) = u20 1(k 1)q 2 (k 2 )0 3 (k 3)[W - U(r)k1 ] (7)

Furthermore, we assume that hi(ki) takes a form of

1 A(
1 1 -+- (Aiki) 2
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where 2Aj represents the integral length scale of u2 in the i-th wave vector
direction. WAlhen the radial integral length scale is small with respect to
the blade span, i.e., 3(k3) -_ A3/wr and the radial direction wave number
is small, i.e., k3R < 1 , the force spectrum , equation ( 6) becomes

,)= I1 1) 'RH p2 7rC2 A3 I L2D(kCI2) 12 As(k 2b) 12

U 2 (r)u2q1(k1)02(k 2 )n?(0)b[o. - U(r)kl]drdkldk2
- L wC

Jk 2 I.R/P C2A3 1 L2D( -) 121As[(k 2 sin$ + -cos¢)b] 2
U H 2UU

U 2(r)u22l(w/U)$ 2(k 2)n?(p)drdk2  (9)

For simplification, the average spanwise lift amplitude as a function of
wave number has been used in the last formulation. Then the turbu-
lence spectrum can be moved outside of the radial integral. The discrete,
numerical expression of equation ( 9) becomes

y P2WC 12 W1
'(W)= E0 2(k2 ) , prC2A3 I w(-) II As[(k 2 sinq + -cos)b ] 12

bk2  6R 2U u

uIU201(w /U) n?(0) (10)

Equation ( 10) entails summation over the blade elements and the wave

number and it is numerically more managable than :quation ( 6). The
application of this model will be presented in a later section and the results
will be discussed. For the case of small advanced coefficient and small hub,
RT > RH, equation ( 9) can be further reduced to

7



7w 2 2,, )l12
_[p($RT)2]2(CR) 2U2/ (Q RT)2  

2 (~-
n(Y) q( ) _ I A,[(k 2 sin + c Cos -)b] 1

UT UTUT

0 2(k 2)dk2

where UT is the resultant tip speed VV 2 + (RTQ) 2 (V is axial inflow ve-
locity). Blake[7] obtained the asymptotic solutions of the above equation.
Evaluation of the integral is determined by the relative width of the turbu-
lence spectrum, 0 2 (k 2 ), and the filter function, I A,[(k 2 sin I- + cos 7)b] 12.
When the band of 0 2 (k 2 ) is greater than the range of the filter function,
i.e., the axial integral length parameter, 2A 2, is smaller than the blade
spacing projected in the axial direction (small correlation length), the last
equation can be simplified to

w 87r2 1 2)2 4( C )2(7r)2u2A3 A1 /7rRT
3n, ( R pV RT (T J V 2 RT 1 ± (Alw/Q!RT) 2

1

1 + 7rwC/QRT

(12)

On the other hand, when the axial integral length parameter, 2A 2, is
greater than the blade spacing projected in the axial direction (large cor-
relation length), equation ( 11) becomes

) 8N7r2 1 22- 4( C 2()2 U2 2A3 Al/7rRT
3 w) -2 P RT) \J V2 RT 1 + (AImN/RT)2

1 A,[(k 2 siny + cos y)b] 12

1 + 7rmNC/RT

8



where m is the number of the blade rate frequency; otherwise, IZ(w)
equals zero.

In examining equations ( 12) and (13), it is seen that equation ( 12) is
a monotonically decreasing function of w and it resembles the rotational
uncorrelated results of Sevik [1]. Equation ( 13) contains only the blade
rate humps with non-decayed amplitude above the rotational uncorre-
lated results. Neither of these approximations can be applied to predict
the complete measured phenomena. In order to obtain a meaningful pre-
diction, one has to go back to at least equation ( 11). Numerical results
show that even ( 11) does not give satisfying predictions; only the results
of equation ( 10) are in reasonable agreement with the measurements.
Further discuissions of the spectrum approach will be given in the results
section.

Correlation Approach

The derivations of the frequency spectrum of propeller thrust using the
correlation approach are briefly discussed here. These derivations follow
the theory of Sevik [1] except that the velocity correlation has been mod-
ified to incorporate propeller rotational effects. In order to calculate the
characteristics of the fluctuating force over the blade surfaces, the blade
is divided into a number of surface elements. The time-dependent forces
acting on the various surface elements are related by virtue of spatial and
temporal correlation of the velocity fluctuations in the approach stream
as well as by virtue of the induced effects that take place between adja-
cent elements. In the following tensor equations, subscripts are used to
denote the direction along the coordinate axes, while superscripts are used
to denote the blade element involved. For example, F!(t, r) denotes the
hydrodynamic force acting on the a-th element in the direction i at the
instant of time t caused by a velocity fluctuation of unit magnitude in the
direction j on the 3-th element at the instant r. With this convention, the

9



hydrodynamic force acting on the a-th element at time t in the direction
i, 0(t), due to the influence of velocity fluctuation at all elements, 3, and
in all the directions, j, over all the time, T, is expressed as

£'(t) JET(t, r)U3(7)d7 (14)

where

21]= 1,2,3
a,B = 1, 2, ... n

Since £?(t) is a random function of time in a turbulent flow, a statistical
approach must be employed. If the inflow turbulence is time-invariant, the
correlation function of unsteady forces, 4W, becomes

V' (7) E[P(t) (t + -r)]

- lim 1 f ] Fk'7(ri -- 7)

T-oo T k

b(t+ 7 - 72 )d~idT2dt

-- p Fo (7"1 ) jm(7 2 )Rk( 7 + 7 2 )dd 2

where

+ 71 - 72) =liM u(t - r)ub(t + r - 72 )dt

The corresponding frequency spectrum of the correlated force fluctua-
tions on the a-th element in the direction i due to the 3-th element in
the direction j can be found by taking the Fourier transform of the above

10



correlation tensor:

a- 1 J 00 k 3 ~ir

1 J Jo Jo Fik (r)dr1F36(r 2 )dr 2 Rm(r + 71 -7 2 )d727r -o 0 0jMk

= [gik (w)][gM(w)]eG'(w) (16)

where

H2~7() f~'~kYT -elrdT

and
G_"( - 0 2'b k (-)e-i'd7

H$i(w) is the hydrodynamic frequency response function and G 6 (W) is
the Fourier transform of the velocity correlation function. Equation ( 16)
is the formula for predictions of unsteady forces due to inflow turbulence.
When we apply this equation to the rotors, we have to specify H"(w)
and G'6(w) according to the enviroments in which the rotors are operat-
ing. A computer code has been written to compute the G(w) and '(w) for
specified turbulence characteristics. To demonstrate the computation pro-
cedure, the analysis of an isotropic turbulence is given below for general
discussion.

Isotropic Turbulence

In the present method, we shall first derive the velocity correlation
function between points a and fl. A detailed derivation for isotropic tur-
bulence is given by Hinze [9] and is briefly described below. Longitudinal

11



correlation refers to the coordinate system in Figure 3. The origin of the

coordinate system is at a and r is the distance between points a and 3
with components j along the axis xi. In the plane of the a -line and

the xl-axis, the velocities at a and / can be resolved into the components

Ul,, directed between these two points, and the components U2,, which are

perpendicular to the line-a3. The velocity components along the xl-axis

at these two points are:

= cosyl- Usin ,)

1 1*7 -

U2 r 2

= 3 1 ) 1 - (17)
U1  U r

Let us define

*,u l U 12 f(r)

2* 2 g(r)

where u is the root-mean-square of turbulence and r is the distance along
these two points. Because of invariance conditions, we have

O O= =OU 0
u1* 2* U2*ui*

When we multiply u' by ut and take the mean value of the product, we

get

12



R1= O,[ur -o ('

U2[f(r) - g(r>U2 + g(r)] (18)

Next, let us consider uu. From Figure 4, we have

I= r u2, 1-2
S13 -- ), CO r 2

= u 2 _*COS 2+ * 12 +F(u35 )
tan o

= - + '2* + ,F(u) (19)
r 3*

where F(u ,) is the term associated with the velocity component uo3. This
term is not given in detail because the invariance and isotropy conditions

provide the zero mean for all terms containing the u* component. The
invariance and isotropy conditions yield

Ua 13= aU)
u1*u2* 1* un 3 *

= a13
u2*u1*= Ua U 1.

=0

The correlation of u ' and uo is determined as

13



= u2 f(r) - g(r) (20)
r2  C1Ck

In general, combining equations ( 18) and ( 20), we can write the ve-
locity correlation as

Rj = 2[f(r)- g(r) i~j + g(r)b]j (21)

where 6ij is the Kronecker delta. The relationship between f(r) and g(r)
can be derived from the continuity condition of fluid incompressibility.

O 1  = 0 (22)

acj

Substituting Rj of equation ( 21) into equation ( 22) yields

rOf(r) =g(r) (23)
_)+2 rr

From this relation between f(r) and g(r), the velocity correlation function
can bc cxprcssed in terms of one scalar function, either f(r) or g(r), which
gives

U2 1 Of(f (r) + rf(r) 6 ] (24)

2r r 2 r

The longitudinal correlation function, f(r), can be approximated by an
exponential function

14



f(r) = - /A (25)

where A is the integral scale of the turbulence. This is equivalent to
assuming that the turbulence spectrum is in the form as it is used in the
spectrum approach. As has been verified by screen-generated turbulence,
this is a good approximation for homogeneous and isotropic flow field.

For blades rotating in a turbulent field with rotational speed Q, r(7) is

r(7) - /(Vr)2 +r +r -2r,,r cos(O - 00 + Q7) (26)

Equation ( 24) can be rewritten as:

2 1 (1 (27
Rj = u [2- j + - 2)ij]- A (27)

or in the algebraic form

R11 = U 22rA 2A

2[r (r= 2rAh -( 2-916 A

R12 = U [2  ] (28)

By taking numerical Fourier transformations of the time domain cor-
relation funct'ion equa :iou 11) one -P m"r
the velocity correlation function, GCi(w), as

15



Gj(w) = "- fj Rij(r)e-iwdr (29)

where the omitted superscripts are the indices of two points for conve-
nience.

In examining equation ( 26), it is clear that Rij is periodic with respect
to blade rotation due to the presence of the cosine term in the correlation
function. This periodic term is most dominant when V/Q is small. As r or
V increases, the importance of the cosine term decreases and Rj becomes
a monotonically decreasing function of r. The spectrum represented by
equation ( 29) should thus contain both a broadband and a blade rate
hump spectrum in general. It resembles the experimental measurements
and will be discussed in detail in the results section.

Sevik [1] and Martinez [8] studied special cases of the above equation.
Sevik [1] considered the case where QR is much smaller than V and he
approximated equation (26) by

r(7 = 0) -r, + r,3 - 2ro,,rcos(O - 00) (30)

The corresponding velocity correlation then becomes

Rij Ri(V7) (31)

The components of the velocity correlation tensor are

R11 = u e-(
A A (32)

16



and
2(1 Vr _ (7=O)

= U - "^- ^ '(33)

The effect of the angular location of the blade, Qr, is totally absent in

Sevik's correlation model; -r( = )/A is a time independent term. The so-
lution for Gij contains no blade humps and may be expressed analytically;
that is,

9 V
Gil = --U 2  A r/A

7r (.)2 +w2

2 1()2 2
SA A r/A(34)

G2 =_ (.K)2±+W2 (34)±

Hoping to recover the blade rate humps without losing the simplicity

of the analysis, Martinez [8] modified Sevik's analysis by including the

propeller rotational speed through the approximation

r(r) ± r + r2 - 2rr3cos(O. - 00 + Q7) (35)

Then the velocity correlation function becomes

Rl = u2e -( -A+- ) (36)

and

R22 = u2(1- A (37)

17



which still preserves the exponential form of the correlation function used
by Sevik [1]. The analytical form of the corresponding spectrum is given
by Martinez in rcference [8]. The solution contains Bessel functions. The
modification of Martinez made the solution more complex and still did
not recover the blade rate humps as he expected. As is true for the
spectrum approach, simplification of the correlation function implies a
filtering process in the physics. For practical applications, the search for
an analytical solution could have prevented the advancement of unsteady
force prediction methods in the past. The present analysis adapts both
theoretical and numerical techniques. For individual cases, the theoretical
analysis will be carried to its full extent, in this case to equation ( 29),
and then numerical analysis will follow.

Fluid Dynamic Response Function - H(w)

The next step of the computation is the establishment of a transfer
function, H(w), defined in equation ( 16). The simplest computation
is based on two-dimensional, incompressible and inviscid aerodynamics
theory. Sears [10] derived the response function for a zero skew, discrete
sinusoidal gust convected in the plane of a foil at zero angle of attack. The
resulting aerodynamic unsteady force is represented as

H(w) = 27rpUC K(w) (38)
2

where K(w) is the Sears' function and is in terms of cylindrical functions

H 2 (k) and HI2 (k);
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H (2) (k) (9
K(w) = H 2)(k) + iH 2) (39)

where k is the normalized reduced frequency (wC/2U).
Equation ( 38) was derived for an isolated foil operating with sinusoidal

velocity disturbances normal to the foil surface. When applying the equa-
tions to propellers or small aspect ratio foils, the results of using a two-
dimensional approximation may not valid. However, the two-dimensional
theory will give satisfactory predictions providing the value of the local
lift slope is appropriately corrected. This means that the coefficient 27r of
equation ( 38) be replaced by the steady state local lift slope as described
by Sevik [1].

Applying the above Sears' function to a two-dimensional blade, the
angle between the inflow and the direction of advance also has to be con-
sidered. This gives

HP(w) = H(w)cosO (40)

where Hp denotes the two-dimensional response function for a propeller
in its direction of advance and 0 is the inflow angle with respect to that
direction. When operating near design conditions, 0 may be approximated
by the pitch angles of blade sections for most marine propellers.

Numerical Procedures

With a specified correlation function, equation ( 28), and a chosen trans-
fer function, equation ( 40), we may proceed to perform the numerical
unsteady force computations as given in equation ( 16). Since propeller
unsteady forces are generated from the unsteady velocity relative to the
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blades, the velocity spectrum compone.its G(,,.,) in equation ( 16) should
be expressed in a rotational cylindrical coordinate system which is fixed
on the blade. Let the mean inflow to the propeller be denoted by i7.

Then the unsteady angle of attack becomes

a(T) _ tan- 1 UN
UW

' v

(41)

with

co U -4- u' sin & (42)

and

= (u'(O)cos6(O) + u'sink,(O)) + (U cos 6() + U0 sin 00(7))

sin50(0)+ sin 0,(0)rsin) +(r) (43)0 .Xi ,o0)o sinT) 6,10 in3

where €, is the propeller inflow angle at point a and is defined in equation

(39).
The velocity correlation of equation ( 16), thus, becomes

Ra = R' cos6,(0)cos 6(7)+R0cos6,(O) sin 6,(7) +

RL1 sin6o( 0) cOs 63(r)+ R" 3 sin 6, ( 0) sin6o(7) (44)
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The calculation of RO is straight forward as

1 2 - + (1 r r(r)-x 2A) - (45)

where dx = Vr and

r(r) =/(dx) + r + r2 - 2rr o cos(Oo(O) - o(o) + Q r)

(46)

The calculations of R'0 and R 3 in terms of r has to be further ex-
pressed through the instantaneous angular locations of the blade elements.
For the coordinate system shown in Figure 5, the tangential velocity com-
ponent is

0 s U0(-) - sinOq(,) (47)

and the velocity correlations R:0z and R 0 are

nx0 = RaI cos00(r) - R3 sin00(r) (48)

and

R'o(r) = R~y cos 0(0)cos 00(r) + R"3 sin 0(0)sin00(7) -

cos 0,(O) sin O(r) - R3' sin90 (O)cosO 3(r) (49)

where
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dy +(1--)]e A
=r 2rA 2A

R3 =u 2(1- r dxdy)_I )
-2A

=u 2(1 - -dxdz)e - A

zi = U 2 A dz2r 2A A

dy = r cos6o(O)-rfcos0fl(r),

and

dz = rsin60 (0)-rflsin0f(r).

Since turbulence has been assumed to be homogeneous, R1(r) is only a
function of r, and can be evaluated at 0,(0) and 0#(-r).

Based on the above definition of RNN, correlation functions are numer-

ically evaluated at given w values as

G" 1() RNN(7)e- (50)GNN(" 2-- 20

The thrust spectrum tensor, equation ( 16), between blade elements a

and 0 is then calculated as:

'I (w) =[g~,7 (w)]* [H~ 1G(w)] (51)

Assuming the unsteady force generated at each individual strip is two

dimensional, the last equation becomes
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'I~ w)=[H,() NNH() [~()

with Hp given by equation ( 39). The total unsteady force spectrum is
obtained from summing T t 1 (w) over all elements of a and 0. In this com-
putation, the mean flow angle 0 has to be estimated before the unsteady
thrust can be determined. This angle can be obtained from propeller com-
puter codes. For near-design operating conditions, the pitch of the blade
may be used for 0 for most marine propellers, as mentioned earlier.

Results and Discussions

Sevik's experiment [1] is used to study the present approach and to
demonstrate the differences between the present computation and previ-
ous results. The experiment was conducted in the 1.22m (48") diameter
water tunnel at Pennsylvania State University. The propeller used for this
investigation has ten blades with a constant chord length of 2.54cm (1")
and a radius of 10.16cm (4"). The turbulence level in the test section
without the grid was about 0.1%. Two grids were used with mesh sizes of
10.16cm (4") and 15.24cm (6"), respectively, to generate the turbulence
level of about 3% with two different integral length scales at the propeller
plane. The distance between the grid and the propeller plane was twenty
times the grid sizes. Data were taken at a tunnel speed equal to 4.57m/sec
(15ft/sec) and the advance ratio was 1.22. Power spectral density of the
propeller thrust due to turbulence was measured and compared with theo-
retial results of Sevik [1], Figure 6. The measured spectra show significant
humps at the first blade rate frequency while the humps at the higher blade
rates were observable only for the 15.24cm grid case. The theoretical re-
sults of Sevik compared well with the measurements with respect to the
broadband part of the spectrum while the humps were missing. Later,
Blake [7] compared those data with his asymptotic solutions of equation
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(12) and equation ( 13), derived to improve the prediction on blade rate
humps. His results are also given in Figure 6. The smooth broken line in
Figure 6 shows the asymptotic results of small correlation (equation (12))
and the dotted line provides the large correlation results (equation (13)).
It is seen that the small correlation results approach Sevik's theory as
expected since they are equivalent to omitting the rotational correlation
from the analysis. The large correlation asymptotic results give humps
centered at multiples of the blade rate frequency without the broadband
part of the spectrum. The comparison of the asymptotic solutions and
measurement indicate that the basic approach is correct and that numer-
ical simplification should be avoided.

Computations based on equation ( 10) and equation ( 11) were per-
formed numerically for the two grid sizes, and the results are given in
Figures 7 ard 8. The results of equation ( 11), Figure 7, show that the
center frequencies of the humps shift and skew to higher frequencies when
compared with Blake's calculations. The amplitudes of the humps do not
decay at higher blade rates for either grid size. Also, the results using
equation ( 11) show ditches between the humps quite below the measured
results. Since equation ( 11) did not have the radial dependence of the
filtering function, A8, Sears' function and Taylor's hypothesis, it over em-
phasizes the blade rotational effect. By removing the small advance coef-
ficient assumption, including the radial dependence on filtering and Sears'
functions, and numerically integrating equation ( 10), the hump ampli-
tude and ditch depth are reduced and the hump bandwidth is increased
as shown in Figure 8. It is thus demonstrated, in a practical application,
that the radial dependence should be included in the analysis. Neverth-
less, including this effect in the wave number integration complicates the
computation and the spectrum approach is not recommended at present.

Figures 9a and 9b present the comparisons between the results of the
present correlation theory and the experiment. The current correlation
theory predicts both the humps which were demonstrated in the experi-
ment and the broadband part of the spectrum. The broadband part of the
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spectrum compares well while the hump amplitudes and center frequen-
cies of higher harmonics do not agree. The cause of the hump discrepancy
could be in the uncertainty of the inflow turbulence. The experiments
show the inconsistency in the results betweenl0.16cm (4") and 15.24cm
(6") grids. The 15.24cm (6") grid results have humps at both first and
second blade rate frquencies while 10.16cm (4") grid results show only one
hump near the first blade rate. These differences could reflect deviations
from the design homogeneous and isotropic grid turbulent inflow. Since
the characteristics of the inflow were not measured, no further compar-
isons are possible. However, from the general features of the comparsion
and the other computations which are not included, the authors are cer-
tain that the present model should predict the spectrum reasonably well
if the inflow turbulence is given.

The characteristics of the unsteady force spectrum may be general-
ized from the study of isotropic turbulence. The present isotropic results
show that the spectrum can be normalized in terms of the parameters
V/As?, A/R and w/Q. Their influence on the resulting unsteady force is
demonstrated in Figures 10 and 11, and is summarized as follows:

1) The effect of the inflow turbulence scale, A/R: In general, the smaller
the turbulence length scale, the higher the broadband unsteady spectrum.
However, both amplitudes and bandwidths of the blade rate humps de-
crease with decreasing turbulence scale as the result of faster decay of the
rotational correlations, while the variation of the turbulence length scale
has only a minimal effect on the hump center frequencies, Figure 10.

2) The effect of advance coefficient, V/AQ: With other nondimensional
parameters held constant, Figure 11 shows that as the advance coefficient
decreases, the blade rate humps become more pronounced. The higher
blade rate humps become significant at low advance coefficients as shown
by Blake[7] and discussed previously. In the normal operating condition
(V/Af2 greater than 0.5), only the first blade rate hump is expected.

3) Skew of the hump center frequencies: The center frequencies of the
humps shown in Figure 12 are not at blade rate frequencies and are skewed
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to the right. The skew is caused by the geometrical pitch of the blade.
The larger the pitch, the greater the skew will be. The first order estimate
of this skewness may be approximated from equations ( 11) or ( 48).

4) Inverse cubic dependency on the high frequencies: To demostrate
the spectrum behavior at high frequencies, the theoretical results of the
grid turbulence for 10.16 cm and 15.24 cm screens are re-plotted in nor-
malized form in Figure 13. The frequency is normalized by the blade rate
frequency and the thrust spectrum is normalized by the third power of
the velocity. At high frequencies, past the second hump, the slope of these
normalized curves approaches minus three as expected from equation ( 12)
or equations ( 34) and ( 38) for a given advance coefficient and turbulence
level. The two grids used in the experiment did not cover enough of a
range in turbulence lengths to make as substantial alterations near the
hump as the theoretical calculation provided in Figure 10.

Because ships normally operate at a nearly constant advance coefficient,
it is of interest to present the thrust spectrum in dimensional form as a
function of ship speed or popeller rpm with a given advance coefficient.
The behavior of the thrust spectra at different speeds for the 10.16 cm grid
turbulence is shown in Figure 14. It is seen that the hump bandwidth at
the first blade rate frequency increases as ship speed increases. In practice,
one should anticipate a sharp hump during lower speed operation.

Conclusions

Theoretical predictions of broadband thrust forces in a turbulent flow
are presented. The calculations are carried out using a correlation method
and a spectrum method. The results of the correlation theory provide a
better correlation with experiment than the spectrum theory, computed
from an assumption of homogeneous and isotropic turbulence. Turbulence
velocity correlation can be considered as the combination of transverse
and rotational correlation. The effect of transverse correlation produces
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an unsteady thrust proportional to the third power of ship speed. The
rotational correlation is inversely proportional to a rotational parameter
given by V/AQ'. The rotational correlation distorts the V3 power rela-
tion and causes the unsteady thrust spectra to show humps near the first
and second blade rate frequencies; these humps skew to the higher fre-
quency side of the blade rate frequencies. Since the hump phenomena
were not explained previously, only limited, inconclusive experiments are
available to verify the theory. Future experiments should include simulta-
neous measurement of unsteady force and turbulence in order to validate
the theory.

The spectrum method is not as easy to apply as the correlation method
because it involves higher order integration. When the integration or-
der was reduced through simplification, the results were also degraded as
shown in Figures 6 through 8. The correlation method gives good results,
Figure 9, and can be adapted to more complex cases with little numerically
difficulty.

In addition to improving the inflow turbulence assumptions, the analyt-
ical methods can be further improved by including the effect of finite span,
camber and angle of attack. A parametric investigation of the turbulence
inflow and propeller unsteady response should be done under laboratory
conditions before the theory is applied to a complex propeller/rotor ge-
ometry.
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Propeller Blade Geometry
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Fluid Dynamic Transfer Function

Fig. 1. Flow chart of excitation force model.
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Fig. 2. Definition of local coordinate system.
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Fig. 5. Chordwise strips on propeller blade.
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